Zadanie: 0,0016 do potęgi minus 0,25 , 2,25 do potęgi minus Rozwiązanie: 1 10 2 5 2,25 do potęgi 0,25 czyli 1 1 4 do potęgi 1 2 to 4 5 do potęgi 1 2 Zaliczaj.pl Jesteś niezalogowany Zaloguj się lub zarejestruj nowe konto.
Choć niektórzy obawiają się potęgowania i uznają je ze działanie skomplikowane, to pokażemy Wam dzisiaj, że obliczanie liczby do potęgi 0 wcale nie musi być trudne ani szczególnie skomplikowane. Potęgowanie jest działaniem stanowiącym uogólnienie wielokrotnego mnożenia elementu przez siebie. Element, który jest potęgowany nazywa się podstawą, natomiast liczba czynników w mnożeniu to wykładnik. Wynik potęgowania stanowi potęgę elementu. Co zaś wiemy o wyniku potęgowania, jaki daje liczba do potęgi 0? Podpowiadamy. Najważniejsze w poniższym artykule: Według wzoru: a do potęgi 0 = 1, każda liczba podniesiona do potęgi 0 daje wynik 1. Potęga 0 – potęga zero Dla dowolnej liczby a, która jest różna od 0 zachodzi taki wzór: a do potęgi 0=1. Potęga 0 stanowi uważana jest za niejednoznaczną. Choć większość działów matematyki uznaje, że zero do potęgi zerowej daje 1, to zdarza się, że wyrażenie zero do potęgi 0 traktowane jest niejednoznacznie. Interpretując zero do potęgi 0 jako 1 upraszcza się wzory i wyklucza konieczność analizowania przypadków szczególnych w twierdzeniach. Jednak 0 do potęgi 0 traktujemy jako niejednoznaczne w tych sytuacjach, w których wykładnik zmienia się w sposób ciągły. Wielu badaczy argumentuje, że najlepsza wartość zero do potęgi 0 jest zależna od kontekstu, co sprawia, że jej zdefiniowanie pozostaje problematyczne. Pozostali zaś uważają, że zero do potęgi zerowej jest równe 1. Debata na temat potęgi zero trwa już od początków XVII wieku. Najczęściej jednak argumentuje się, że liczba do potęgi 0 daje nam 1, co spełnia zarówno funkcję estetyczną, jak i pragmatyczną. Choć jest to kwestia wciąż umowna, to nie da się ukryć, że jest to umowa wynikająca ze zdrowego rozsądku, która ułatwia życie matematykom i każdemu, kto dopiero odkrywa świat potęgowania i rozpoczyna swoją przygodę z potęgą zerową. Sprawdź: Ile to pierwiastek z 8? Ile to jest do potęgi 0? Uznaje się, że zawsze liczba podniesiona do potęgi 0 daje nam wynik 1. Wyraża się to we wzorze: a do potęgi 0 = 1. Z definicji tej wnioskujemy, że 0 do potęgi n = 0, zaś 1 do potęgi n = 1. Kiedy podnosimy daną liczbę do potęgi o wykładniku 0, powinniśmy korzystać z takiego wzoru: a do potęgi 0 = 1. Zgodnie z tym, co ukazuje powyższy wzór – każda liczba rzeczywista różna od zera podniesiona do potęgi 0 daje nam wynik 1. A zatem chcesz wiedzieć – ile to jest do potęgi 0? Spójrzmy na poniższe przykłady: 0 do potęgi 0 = 11 do potęgi 0 = 12 do potęgi 0 = 16 do potęgi 0 = 18 do potęgi 0 = 1itd. Zobacz też: Obliczanie obwodu koła – Jak obliczyć obwód koła? Musimy zapamiętać, że każda liczba podniesiona do potęgi zerowej daje nam wynik 1. Nie powinniśmy dać się zmylić w sytuacji, gdy będziemy musieli obliczyć coś do potęgi 0, np. siedem ósmych do potęgi zerowej. Liczba ujemna do potęgi 0 również zawsze wynosi 1. Pamiętajmy, że niezależnie od stopnia skomplikowania takiego działania, wynik zawsze jest równy 1. A zatem: 7/8 do potęgi 0 = 1¾ do potęgi 0 = 110/8 do potęgi 0 = 1-2 do potęgi 0 = 1Pierwiastek z 7 do potęgi 0 = 123 do potęgi 0 = 11,23 do potęgi 0 = 1itd. Jak widać na przykładzie potęgowania do potęgi zerowej, nie jest to działanie matematyczne szczególnie skomplikowane. W przypadku potęgi 0 musimy po prostu pamiętać o zasadzie, która tutaj dominuje i za każdym razem ją stosować.
1. 1². 4. 2² (czytaj: 2 do potęgi 2 lub 2 do kwadratu; inny zapis: 2^2) 9. 3² (3 do potęgi 2; 3 do kwadratu; 3^2) 16. 4² (4 do potęgi 2; 4 do kwadratu; 4^2) 25.
Odpowiedzi blocked odpowiedział(a) o 21:48 4^1/2=216^1/2=48^1/3=2jest to pierwiastekjakby było 8^2/3= pierwiastek trzeciego stopnia z 8, do kwadratu itd. Rozumiesz? 6 0 kasiulenka222 odpowiedział(a) o 17:16 dzięki rozumiem ;) 0 0 kasiulenka222 odpowiedział(a) o 21:44 do potęgi a nie pomnożyć ;p 0 1 MiłoszG. odpowiedział(a) o 21:36 100*0,5= 50 0 2 Uważasz, że ktoś się myli? lub
Zatem 125 do potęgi ⅓ to 5. To uprości się więc do: 5 razy… x do potęgi 6 i do potęgi ⅓. Widzieliśmy to poprzednio: zamiast podnosić do potęgi iloczyn, możemy podnieść do potęgi czynniki. Zatem 6 razy ⅓ to 6/3, czyli po prostu 2. Ta część tutaj upraszcza się do: x do potęgi (6 ÷ 3) czyli x². x kwadrat. I wreszcie
Jesteś : Strona główna >> Potęgi i pierwiastki >> Potęga o wykładniku całkowitym ujemnym Definicja (Potęga o wykładniku całkowitym ujemnym) Jeżeli \(\boldsymbol a\) jest dowolną liczbą, różną od zera, a \(\boldsymbol n\) jest liczbą naturalną , to \[\LARGE \displaystyle a^{-n}=\frac1{a^n}\] liczby naturalne są to liczby : 1, 2, 3, 4, 5, 6, 7, ... Przykłady: \(\displaystyle 3^{-2}=\frac1{3^2}=\frac1{3\cdot3}=\frac19\) \(\displaystyle 2^{-4}=\frac1{2^4}=\frac1{2\cdot2\cdot2\cdot2}=\frac1{16}\) Twierdzenie (Ułamek do potęgi ujemnej) Jeżeli \(\boldsymbol a\) i \(\boldsymbol b\) są dowolnymi liczbami różnymi od zera, a \(\boldsymbol n\) jest liczbą naturalną , to \[\large \left ( \frac{a}{b} \right )^{-n}=\left ( \frac{b}{a} \right )^{n}\] Przykłady: \(\displaystyle \left(\frac54\right)^{-2}=\left(\frac45\right)^2=\frac45\cdot\frac45=\frac{16}{25}\) \(\displaystyle \left(\frac15\right)^{-3}=\left(\frac51\right)^3=5^3=125\) POTĘGA O WYKŁADNIKU CAŁKOWITYM UJEMNYM - ZADANIA Zadanie 1 Podane liczby podnieść do potęgi minus jeden : 1 , 2 , 6 , 25 , 10 , 100 Rozwiązanie Zadanie 2 Podnieść liczby do ujemnej potęgi : \( 6^{-2}\;,\;10^{-2}\;,\;5^{-3}\;,\;4^{-4}\;,\;1^{-5}\;,\;2^{-6}\)Rozwiązanie Zadanie 3 Oblicz potęgi : \(\left(-2\right)^{-1}\;,\;-2^{-1}\;,\;\left(-3\right)^{-2}\;,\;-3^{-2}\) , \(\left(-5\right)^{-3}\;,\;\left(-2\right)^{-4}\;,\;\left(-10\right)^{-2}\)Rozwiązanie Zadanie 4 Oblicz ułamki podniesione do potęgi ujemnej: \(\left(\frac25\right)^{-1}\;,\;\left(\frac47\right)^{-2}\;,\;\left(\frac13\right)^{-3}\;,\; \left(0,1\right)^{-1}\;,\;\left(0,2\right)^{-2}\) korzystając ze wzoru: \(\large a^{-n}=\frac1{a^n}\)Rozwiązanie Zadanie 5 Oblicz ułamki podniesione do potęgi ujemnej: \(\left(\frac37\right)^{-1}\;,\;\left(\frac54\right)^{-2}\;,\;\left(\frac15\right)^{-3}\;,\; \left(0,1\right)^{-1}\;,\;\left(0,5\right)^{-2}\) korzystając ze wzoru: \(\left(\frac ab\right)^{-n}=\left(\frac ba\right)^n\)Rozwiązanie Zadanie 6 Udowodnij wzór na podnoszenie ułamku do potęgi ujemne : \(\large \left(\frac ab\right)^{-n}=\left(\frac ba\right)^n\)Rozwiązanie Powrót : Strona główna >> Potęgi i pierwiastki >> Potęga o wykładniku całkowitym ujemnym
Nov 25, 2023 at 7:32 pm ET • 1 min read USATSI No. 8 Alabama converted an unbelievable 31-yard touchdown on fourth-and-goal to shock Auburn 27-24 and escape the Iron Bowl with an improbable victory.
Oblicz 4 do potęgi 5/2 27 do potęgi 2/3 0,04 do potęgi 3/2 (25/81) do potęgi -1/25 (6 do potęgi 1/4) do potęgi - 0,5
Uporządkuj malejąco poniższe liczby : (-1/3) ^3 , -(1/2)do potęgi 2 , -5 do potęgi 2 , (-5) do potęgi 2 , (-1/2) do potęgi 2 , -(-1/3) do potęgi 3. Question from @Gabi345 - Gimnazjum - Matematyka
Ta pomoc edukacyjna została zatwierdzona przez eksperta!Materiał pobrano już 334 razy! Pobierz plik przedstaw_wynik_działania_jako_potęgę_liczby_2 już teraz w jednym z następujących formatów – PDF oraz DOC. W skład tej pomocy edukacyjnej wchodzą materiały, które wspomogą Cię w nauce wybranego materiału. Postaw na dokładność i rzetelność informacji zamieszczonych na naszej stronie dzięki zweryfikowanym przez eksperta pomocom edukacyjnym! Masz pytanie? My mamy odpowiedź! Tylko zweryfikowane pomoce edukacyjne Wszystkie materiały są aktualne Błyskawiczne, nielimitowane oraz natychmiastowe pobieranie Dowolny oraz nielimitowany użytek własnyZnajdź odpowiedź na Twoje pytanie o Przedstaw wynik działania jako potęgę liczby 2 : A) 2*2^3*8^5 B) 10^6/5^6 ( to ułamek ) : 2^3 C) (4^5)^7. Odpowiedź:Przedstaw wynik działania jako potęge liczby 2 2 * 2 do potęgi 3 * 8 do potęgi 5 = 2^4 * (2³)^5 = 2^4 * 2^15 = 2^1910 do potęgi 6. Przedstaw wynik działania jako potęgę liczby 2. Question from @MilikPinkamena – Szkoła podstawowa – „Przejdź do Odrabiamy”, zgadzasz się na wskazane powyżej działania. W przeciwnym wypadku, nie jesteśmy w stanie zrealizować usługi kompleksowo i. Przedstaw wynik działania jako potęgę liczby 2 : A) 2*2^3*8^5 B) 10^6/5^6 ( to ułamek ) : 2^3 C) (4^5)^7 D) 1/8*4^5. Question from @Strega25 – wynik w postaci potęgi liczby 2. odp to 2^frac{11}{2} frac{4 ^{3} cdot 16 ^{ frac{1}{4} } : sqrt[5]{32} }{ 64^{- frac{3}{4} } cdot 8. Potęgi i pierwiastki/Liczby/Szkoła średnia – Treści i pełne rozwiązania. przedstaw w postaci potęgi liczby 2. Wynik zapisz w postaci – a + b√ c. Przedstaw wynik działania jako potęgę liczby 2. Question from @MilikPinkamena – Szkoła podstawowa – Potęga. a^n = b. a^n – n-ta potęga liczby a ( a do potęgi n ). n – wykładnik potęgi. a – podstawa potęgi. b – wynik potęgowania. Przykład: 3^2. .. i Rady (UE) 2016/679 z dnia 27 kwietnia 2016 r. znane jako RODO. Klikając „Przejdź do Odrabiamy”, zgadzasz się na wskazane powyżej z podanych wielkości jest równa wielkości zapisanej na pomarańczowym tleKtóra z podanych wielkości jest największa ? 1250 m 1200 cm 100 dm 10,25 m 1250 cm. Ostatnia data uzupełnienia pytania: 2009-11-11 12:27: Rodzice dzieci, które zostały zapisane na dyżur wakacyjny w miesiącu. Prosimy rodziców o przynoszenie gałązek choinkowych różnej z podanych wielkości jest równa wielkości zapisanej na niebieskim tle. Question from @Halinabladek – Gimnazjum – nauczyciel, który zna i rozumie matematykę oraz wie po co jej uczy może do. krotność danej wielkości, podział na równe części, część z całości zadań z popularnych podręczników do matematyki, fizyki, chemii, biologii, geografii i innych. Portal i aplikacja edukacyjna gdzie jako potęgę liczby 2 2^18Przedstaw wynik działania jako potęgę liczby 2. Question from @MilikPinkamena – Szkoła podstawowa – Przedstaw w postaci potęgi liczby 2: 16^5*8^2*1/4*2^3 = 2. img. Powtórzenie potęgi i pierwiastki – Matematyka – liczbę zapisz jako potęgę liczby 2 kamczatka: Daną liczbę zapisz jako potęgę liczby 2 √8√8√8 wiem że √8 to 80,5. 29 wrz 21:42. Aga1.: a 8= się je jako a^n , gdzie n. Jeżeli wykładnik potęgi jest liczbą naturalną, to. Liczba 2 podniesiona do potęgi cfrac{1}{2}. Przedstawić wynik w postaci potęgi liczby 2. odp to 2^frac{11}{2} frac{4 ^{3} cdot 16 ^{ frac{1}{4} } : sqrt[5]{32} }{ 64^{- frac{3}{4} } cdot -2^4Kartkówka nr 4 z algebry liniowej 1. 1. Oblicz. ( -11 12. -16 17. )n .Oblicz 4. background image. Pobierz cały dokument. Rozmiar 1022,1 KB. 240/327, 208/2552, 209/8395, 105/5709, 111/6237, 125/2930, 722/5775, 738/8942, źródło: Oblicz. (mnoŜenie w zakresie 100). 4 x 8 = ….. 9 x 6 = ….. 7 x 9 = ….. 5 x 6 = ….. 7 x 7 = .Podczas wykonywania obliczeń zmiany procentowej obliczane są zmiany wartości liczbowych w czasie. Obliczanie zmiany procentowej jest formą normalizacji, 4 tys. odpowiedzi. tys. osób dostało pomoc. 7 – (5x + 4) = 7 – 5x – 4 = 3 – 5x. grendeldekt i 9 innych użytkowników uznało tę.
2,5 do potęgi 2,5 ile to jest?. Question from @19Wiki94 - Liceum/Technikum - Matematyka. Search. Articles Register ; Sign In . 19Wiki94 @19Wiki94. September 2018 1
Szybka nawigacja do zadania numer: 5 10 15 20 25 30 35 40 .Liczba \(7^7\cdot 7^8\) jest równa A.\( 7^{56} \) B.\( 14^{56} \) C.\( 49^{15} \) D.\( 7^{15} \) DLiczba \(5^{17}\cdot 6^{17}\) jest równa A.\( 30^{34} \) B.\( 30^{17} \) C.\( 11^{17} \) D.\( 11^{34} \) BLiczba \(2^{20}\cdot 4^{40}\) jest równa A.\( 2^{60} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) BIloczyn \(81^2\cdot 9^4\) jest równy A.\( 3^4 \) B.\( 3^0 \) C.\( 3^{16} \) D.\( 3^{14} \) CLiczba \( 3^{30}\cdot 9^{90} \) jest równa: A.\(3^{210} \) B.\(3^{300} \) C.\(9^{120} \) D.\(27^{2700} \) ALiczba \(2^{40}\cdot 4^{20}\) jest równa A.\( 4^{40} \) B.\( 4^{50} \) C.\( 8^{60} \) D.\( 8^{800} \) AIloraz \(125^5:5^{11}\) jest równy A. \(5^{-6}\) B. \(5^{16}\) C. \(25^{-6}\) D. \(25^2\) DLiczbę \(x=2^2\cdot 16^{-4}\) można zapisać w postaci A.\( x=2^{14} \) B.\( x=2^{-14} \) C.\( x=32^{-2} \) D.\( x=2^{-6} \) BDana jest liczba \(x=63^2\cdot \left (\frac{1}{3} \right )^4\). Wtedy A.\( x=7^2 \) B.\( x=7^{-2} \) C.\( x=3^8 \cdot 7^2 \) D.\( x=3 \cdot 7 \) AIloczyn \(9^{-5}\cdot 3^8\) jest równy A.\( 3^{-4} \) B.\( 3^{-9} \) C.\( 9^{-1} \) D.\( 9^{-9} \) CTrzecia część liczby \(3^{150}\) jest równa: A.\( 1^{50} \) B.\( 1^{150} \) C.\( 3^{50} \) D.\( 3^{149} \) DWyrażenie \(\sqrt{1{,}5^2+0{,}8^2}\) jest równe: A.\( 2{,}89 \) B.\( 2{,}33 \) C.\( 1{,}89 \) D.\( 1{,}70 \) DLiczba \(\left (\frac{2^{-2}\cdot 3^{-1}}{2^{-1}\cdot 3^{-2}} \right )^0\) jest równa A.\( 1 \) B.\( 4 \) C.\( 9 \) D.\( 36 \) ALiczba \(128^{-4}:\left ( \frac{1}{32} \right )^4\) jest równa A.\( 4^{-4} \) B.\( 2^{-4} \) C.\( 2^4 \) D.\( 4^4 \) ALiczba \(\sqrt[3]{(27)^{-1}}\cdot 72^0\) jest równa A.\( \frac{1}{3} \) B.\( -\frac{1}{3} \) C.\( 0 \) D.\( 3 \) ALiczba \(7^{\frac{4}{3}}\cdot \sqrt[3]{7^5}\) jest równa A.\( 7^{\frac{4}{5}} \) B.\( 7^3 \) C.\( 7^{\frac{20}{9}} \) D.\( 7^2 \) BLiczba \(\sqrt[3]{{(-8)}^{-1}}\cdot {16}^{\frac{3}{4}}\) jest równa A.\( -8 \) B.\( -4 \) C.\( 2 \) D.\( 4 \) BLiczba \( 3^{\frac{8}{3}}\cdot \sqrt[3]{9^2} \) jest równa: A.\(3^3 \) B.\(3^{\frac{32}{9}} \) C.\(3^4 \) D.\(3^5 \) CLiczba \(\sqrt[3]{3}\cdot \sqrt[6]{3}\) jest równa A.\( \sqrt[9]{3} \) B.\( \sqrt[18]{3} \) C.\( \sqrt[18]{6} \) D.\( \sqrt{3} \) DLiczbę \(\sqrt{32}\) można przedstawić w postaci A.\( 8\sqrt{2} \) B.\( 12\sqrt{3} \) C.\( 4\sqrt{8} \) D.\( 4\sqrt{2} \) DWartość wyrażenia \(5^{100}+5^{100}+5^{100}+5^{100}+5^{100}\) jest równa A.\( 5^{500} \) B.\( 5^{101} \) C.\( 25^{100} \) D.\( 25^{500} \) BDo przedziału \((1, \sqrt{2})\) należy liczba: A.\( \sqrt{3}-1 \) B.\( 2\sqrt{5}-3\sqrt{2} \) C.\( \sqrt{6}-\sqrt{3} \) D.\( \sqrt{5}-\sqrt{1} \) DLiczbę \(0{,}000421\) można zapisać w postaci \(a\cdot 10^k\), gdzie \(a \in \langle 1, 10 \rangle, k \in C\). Wówczas: A.\( a=0{,}421;\ k=-3 \) B.\( a=4{,}21;\ k=-5 \) C.\( a=4{,}21;\ k=-4 \) D.\( a=42{,}1;\ k=-6 \) CWyrażenie \(2\sqrt{50}-4\sqrt{8}\) zapisane w postaci jednej potęgi wynosi A.\( 2^{\frac{3}{2}} \) B.\( 2^{\frac{1}{2}} \) C.\( 2^{-1} \) D.\( 4^{\frac{1}{2}} \) ALiczba \(\frac{\sqrt{50}-\sqrt{18}}{\sqrt{2}}\) jest równa A.\( 2\sqrt{2} \) B.\( 2 \) C.\( 4 \) D.\( \sqrt{10}-\sqrt{6} \) BKtóra z poniższych liczb jest większa od \(1\)? A.\( (0{,}1)^{-3} \) B.\( \left ( \frac{1}{2} \right)^{10} \) C.\( (-2)^{-4} \) D.\( \frac{1}{\sqrt{2}} \) AWiadomo, że \(x^{0,1205}=6\). Wtedy \(x^{0,3615}\) równa się A.\( \sqrt[3]{6} \) B.\( 216 \) C.\( 36 \) D.\( 3 \) BLiczby \(A=(5^4)^3, B=5^5+5^5, C =5^{12} : 5^7, D=5^3 \cdot 5^6\) ustawiono w kolejności malejącej, zatem A.\( B>A>D>C \) B.\( A>D>B>C \) C.\( A>B>D>C \) D.\( C>B>D>A \) BLiczba \(\frac{5^3\cdot 25}{\sqrt{5}}\) jest równa A.\( 5^5\sqrt{5} \) B.\( 5^4\sqrt{5} \) C.\( 5^3\sqrt{5} \) D.\( 5^6\sqrt{5} \) BPo uproszczeniu wyrażenia \( \frac{(a^2:a^3)^{-2}}{a^{-5}} \), gdzie \( a \ne 0 \), otrzymamy A.\(a^7 \) B.\(a^{-3} \) C.\(a^3 \) D.\(a^{-7} \) ALiczba \( \left ( \frac{1}{\left (\sqrt[3]{729}+\sqrt[4]{256}+2 \right)^0} \right )^{-2} \) jest równa A.\(\frac{1}{225} \) B.\(\frac{1}{15} \) C.\(1 \) D.\(15 \) CLiczba \( \frac{1}{2}\cdot 2^{2014} \) jest równa A.\(2^{2013} \) B.\(2^{2012} \) C.\(2^{1007} \) D.\(1^{2014} \) ALiczba \(\left (\sqrt[3]{16}\cdot 4^{-2} \right)^3\) jest równa A.\( 4^4 \) B.\( 4^{-4} \) C.\( 4^{-8} \) D.\( 4^{-12} \) BPołowa sumy \(4^{28}+4^{28}+4^{28}+4^{28}\) jest równa A.\(2^{30} \) B.\(2^{57} \) C.\(2^{63} \) D.\(2^{112} \) BLiczba \(\left ( \frac{3+\sqrt{3}}{\sqrt{3}} \right)^2\) jest równa A.\( 4 \) B.\( 9 \) C.\( \frac{3+\sqrt{3}}{3} \) D.\( 4+2\sqrt{3} \) DLiczba \(3^{\frac{9}{4}}\) jest równa A.\( 3\cdot \sqrt[4]{3} \) B.\( 9\cdot \sqrt[4]{3} \) C.\( 27\cdot \sqrt[4]{3} \) D.\( 3^9\cdot 3^{\frac{1}{4}} \) BWskaż równość prawdziwą. A.\( -256^2=(-256)^2 \) B.\( 256^3=(-256)^3 \) C.\( \sqrt{(-256)^2}=-256 \) D.\( \sqrt[3]{-256}=-\sqrt[3]{256} \) DLiczba \(\frac{\sqrt{8}}{\sqrt[3]{16}}\) jest równa A.\( \sqrt[3]{2} \) B.\( \sqrt[4]{2} \) C.\( \sqrt[5]{2} \) D.\( \sqrt[6]{2} \) DLiczba \(2^{\frac{4}{3}}\cdot \sqrt[3]{2^5}\) jest równa A.\( 2^{\frac{20}{3}} \) B.\( 2 \) C.\( 2^{\frac{4}{5}} \) D.\( 2^3 \) DLiczba \(\frac{9^5\cdot 5^9}{45^5}\) jest równa A.\( 45^{40} \) B.\( 45^9 \) C.\( 9^4 \) D.\( 5^4 \) DLiczba \(\sqrt{\frac{9}{7}}+\sqrt{\frac{7}{9}}\) jest równa A.\( \sqrt{\frac{16}{63}} \) B.\( \frac{16}{3\sqrt{7}} \) C.\( 1 \) D.\( \frac{3+\sqrt{7}}{3\sqrt{7}} \) BLiczba \(\frac{5^{12}\cdot 9^5}{15^{10}}\) jest równa A.\( 25 \) B.\( 3^7 \) C.\( 3^3 \) D.\( \frac{25}{27} \) A
l3I1uUJ. 42yd43nny6.pages.dev/37842yd43nny6.pages.dev/36242yd43nny6.pages.dev/1842yd43nny6.pages.dev/32342yd43nny6.pages.dev/23642yd43nny6.pages.dev/35842yd43nny6.pages.dev/15142yd43nny6.pages.dev/23042yd43nny6.pages.dev/114
25 do potęgi 1 2